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Combining spectroscopic data (MS, IR): exploratory
chemometric analysis for characterising similarity/diversity

of chemical structures
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Abstract

Combined infrared–mass spectra (IR–MS) have been used to examine a small data set of synthetic substances in
order to elucidate whether a combination of spectral descriptors yield better classification and similarity predictions
than their corresponding individual spectral descriptors. To eliminate differences in variation, a logarithmic transfor-
mation or log double-centering pretreatment was necessary. Principal component analysis (PCA) was applied to
observe clusters of similar compounds. Hierarchical upgma-cluster analysis was also used for data classification.
© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the lead generation phase of drug discovery,
the concept of molecular diversity has become an
increasingly important tool. However, the process
of comparing substances and quantitatively as-
sessing similarity starts with the choice of the
appropriate descriptors. A wide variety of descrip-
tors have been developed for diversity studies and
among them, two-dimensional structural finger-
prints are one of the most popular since they
encode a great deal of information. A molecular

fingerprint identifies several different patterns of
the structure and describes those patterns in a bit
string, based on the absence or presence of a set
of two to seven atom patterns [1–4]. A great
number of similarity measures based on different
molecular aspects are described in the literature,
and all of them try to quantify the comparison
between the structure of the elements of a set of
compounds [5].

Multivariate chemometric techniques (e.g. prin-
cipal component analysis (PCA), cluster analysis)
have been used as a method to calculate the
molecular diversity of large collections of individ-
ual compounds with known structure. However,
traditional sources of therapeutic agents include
natural products and microbiological broths
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wherefrom the structures are not known so that
the current techniques become inapplicable and
the knowledge of diversity severely reduced. Con-
sequently, the different molecules have to be con-
verted into other descriptors, e.g. experimental
parameters. Both mass spectrometry (MS) and
infrared spectroscopy (IR) are capable of provid-
ing structure-related information and multivariate
methods based on PCA and cluster analysis have
shown to be useful in either spectral data space to
separate groups of structural similar compounds
[6,7]. An interesting question that arises from the
analysis based upon single spectral descriptors is
whether a combination of them can lead to an
improved classification and a better predictive
power of chemical diversity. To answer this ques-
tion, both spectral descriptors were combined into
one matrix and subsequently employed in a PCA
and a hierarchical cluster analysis.

2. Data

2.1. Spectral features

There is an important difference between data
resulting from IR-spectroscopy and those from
mass spectrometry, experimental mass spectra are
obtained as a list of peak positions at nominal
mass units and corresponding intensities. On the
other hand, IR data are supplied as a series of
observed intensities at regular intervals, i.e. IR-
peaks are not always situated at the same
wavenumber. However, use can be made of spec-
tral features, calculated for predefined wavenum-
ber intervals for IR peak position, to solve this
problem of chemical shifts. Spectral features are
vectors that characterise as much as possible the
spectrum of a compound. Feature INT(�1, �2) is
the intensity of a spectral absorption and is calcu-
lated for each interval by using the following
formula

INT(�1, �2)=
�Amax

0
(1)

with Amax being the maximum absorption in this
predetermined interval [8].

2.2. Spectra

The small data set, used in this study, contains
61 synthetic substances with known chemical
structure, listed in Table 1. They were already
used in an analogue study about assessing similar-
ity/diversity by mass spectrometry [6] and Fourier
transform-infrared (FT-IR) spectroscopy [7]. The
data set was chosen in this way that it consists of
a relatively high number of structurally and phar-
macologically similar compounds, e.g. the �-
blockers, some smaller groups of similar
substances (steroids, amino-acids) and some com-
pounds that were randomly selected.

All the FT-IR-spectra were recorded with the
use of a Perkin–Elmer FT-IR Spectrum 100 Spec-
trometer. In order to obtain very good spectra, 16
scans for each sample were recorded in the range
4000–400 cm−1 with a 4 cm−1 resolution at a
sampling interval of 1 cm−1. Before starting a
measurement a background spectrum was
recorded. The full-curve IR-spectra were con-
verted to ASCII format and truncated at 3700
cm−1. In this range, from 3700 to 400 cm−1, all
the compounds present absorption peaks. The
absorbance values were normalised to the range
0–1. As described by Robb and Munk [9], the
studied range was divided into 245 intervals with
the widths continuously increasing with growing
wavenumber and features were calculated by ap-
plying Eq. (1) to each interval. A data matrix
(61×245) was created where the rows correspond
to the 61 compounds and the columns to the 245
wavenumber intervals. The values in the matrix
are the INT spectral features at each predefined
interval.

Electron impact (EI) mass spectra for the same
set of substances were obtained from the NIST/
EPA/NIH MS Database for PC and were repre-
sented as peak tables containing positions
(m/q-ratio) and intensities of all fragment ions. A
data matrix (61×390) whose rows are the 61
substances and whose columns are the 390 m/q-
values was created. The values in the matrix are
the fragment ion intensities normalised for total
mass equal to 100.

Both matrixes were then combined into one big
matrix (61×635) where the first 245 columns are
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the IR spectral descriptors and the following 390
columns the MS descriptors.

Two-dimensional structural fingerprints for the
same substances were obtained using the Daylight
clustering software.

3. Exploratory analysis of the data

3.1. Importance of transformations before
exploratory analysis

If common scaling methods are used, the clus-
tering results are either dominated by the MS
descriptors or the IR spectral features. However,
an improvement is realised by applying a log
transform to the combined spectral data matrix.
This data transformation is often applied in multi-
variate data analysis to eliminate the differences
in variation between the variables. Pre-processing
by log double-centering consists of first taking the
logarithm and then centering the data both by
rows and by colums. This transform eliminates
the size effect when it is present so that only the
contrasts (ratios) between the variables will be
expressed [10].

3.2. Principal component analysis

PCA is often applied to data sets as a tool for
data set size reduction and to uncover the struc-
ture of the data [11]. The combined spectral data
matrix, after a logarithmic transformation and a
log double-centering pretreatment, was analysed.

3.3. Sequential projection pursuit

Sequential projection pursuit (SPP) is a method
that can be used to find inhomogeneities (outliers)
in high dimensional data more easily than PCA
[12]. The method was applied on both log trans-
formed and log double-centered data.

3.4. Cluster analysis

Hierarchical clustering is the process of subdi-
viding a group of compounds into clusters of
compounds that exhibit a high degree of both

Table 1
List of synthetic substances

Maltose1
2 Glucose
3 Saccharin

Penicillin4
Tetracyclin5

6 L-aspartic acid
7 L-asparagin
8 D-leucin
9 L-isoleucin

10 DL-phenylalanin
11 L-tyrosin

Amphetamin12
13 Ephedrin
14 Dopamin

Serotonin15
16 Histamin
17 Melatonin
18 Mexiletin
19 Fenfluramin

Oxeladin20
21 Procain
22 Lidocain
23 Digitoxigenin
24 Digitoxin
25 Testosteron
26 Androsteron
27 Progesteron
28 Estradiol
29 Cholesterol

Terbutalin30
31 Acebutolol
32 Pindolol
33 Oxprenolol
34 Sotalol
35 Propranolol
36 Nadolol
37 Atenolol
38 Alprenolol
39 Metoprolol
40 Betaxolol
41 Prenalterol
42 4-Benzylphenol
43 Menthol
44 Camphor
45 Guanidin
46 Caffein
47 Pentoxifyllin
48 H-purin
49 Lysergide

Strychnin50
51 Codein
52 Heroin
53 Morphin
54 Cocain
55 Nicotin
56 Lobelin
57 Amiodaron
58 Miconazole
59 Nicardipine
60 Sulfapyridin
61 Lormetazepam
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intracluster similarity and intercluster dissimilarity
[15]. The output can be represented as a dendro-
gram [13]. The unweighted pair-group average
linkage (upgma) method with the correlation co-
efficient as similarity measure was used to cluster
the small data set of 61 synthetic substances,
based on their combined IR–MS. This clustering
method is probably one of the most commonly
used hierarchical clustering method and the simi-
larity between the clusters is calculated as the
average of the similarities between their objects
[14].

3.5. Comparison of clusterings

There are a number of ways to measure quanti-
tatively the similarity between two different clus-
terings of the same finite set of objects. The one
used in this study is the measure of Wallace, sw

(1983). A description of the methodology as ap-
plied to mass spectrometry is given in [6].

4. Results and discussion

4.1. Principal component analysis of combined
spectral data

To obtain an overview of the dominating pat-
terns and major trends, a PCA was first per-
formed on the log transformed spectral descriptor
matrix. The first four principal components ex-
plain 89.1% of the total variance, 84.8% is ex-
plained by PC1, 2.2% by PC2, 1.3% by PC3 and
0.8% by PC4. Fig. 1a shows the score plot of PC1
against PC2. The third and fourth components
are visualised in the same way in Fig. 1b and c,
respectively. The corresponding loadings are plot-
ted in Fig. 2a–d.

In the score plot of Fig. 1a, all steroids are
clustered in the upper left part, most amino-acids
are positioned in the lower part of the plot and
the group of �-blockers appears in the central
region of the same plot.

The score plots and loading plots (Figs. 1 and
2) show that the first PC is probably an indicator
of general size, in this case a variable describing
how high the total MS fragmentation and IR-ab-

sorption of the compounds is. However, IR spec-
tral features have higher loadings and therefore
seem to be more important for the first dimension
than MS descriptors. This can be seen in the
loading plot of Fig. 2a. Correspondingly, com-
pounds with low scores in Fig. 1a are primarily
characterised by their mass spectrum, while com-
pounds with high scores are mainly marked by
their IR absorption. PC2 reflects the difference
between compounds primarily characterised by
extensive MS fragmentation, for example com-
pound numbers 23–29 and substances mainly
characterised by a strong IR-absorption in the
C�H stretching region (2800–2300 cm−1), such
as, for instance compound number 6. The MS
fragmentation pattern of the compounds mainly
determines the third PC. Objects with negative
scores show peaks at m/q 30, m/q 42, m/q 64 and
m/q 79. This can also be seen in the loading plot
of Fig. 2c. Fragment ions with m/q 30
(+NH2�CH2) and m/q 42 (CH2�C�O+) arise
from cleavage in the N-alkyl chains of aliphatic
amines and amides. For this reason, chemical
structures that contain aliphatic nitrogen appear
in the lowest region of Fig. 1b. Peaks at m/q 64
and m/q 79 can be associated with, respectively
(C5H4

+) and (C6H7
+) and originate from the

breakdown of aromatic ethers and aromatic
amides. The fourth PC only explains about 0.8%
of the total variance. The interpretation of this
component is difficult since many variables seem
to be important. This is seen in the loading plot of
Fig. 2d. Correspondingly, PC4 primarily discrimi-
nates substances with characteristic peaks at m/q
44 (variable 274), m/q 57 (variable 287), m/q 71
(variable 301), m/q 72 (variable 302) and m/q 86
(variable 316) and/or very intense peaks of high
mass from the rest. These fragment ions arise
from the breakdown of aliphatic amines. The
peaks with m/q 72 (C4H10N+) and m/q 86
(C5H12N+) arise from �-cleavage next to the N-
atom, with the loss of the largest alkyl fragment.
Fragment ions of m/q 86 then break up to form
ions of m/q 71 (C4H9N+) and m/q 57 (+C4H9).
The resulting ion of m/q 72 breaks down further,
giving rise to (CH3CH=NH2)+, m/q 44. How-
ever, fragment ions of m/q 44 can also be at-
tributed to (O=C=NH2)+, (CH2=CHOH)+.
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Fig. 1. (a) Score plot from the PCA of the log transformed combined spectra, showing PC2 against PC1. For the numbering of the
compounds, see Table 1. (b) Score plot from the PCA of the log transformed combined spectra, showing PC3 against PC1. Notation
as in a. (c) Score plot from the PCA of the log transformed combined spectra, showing PC4 against PC1. The numbering of the
compounds is the same as in b.

Furthermore, infrared absorption in the O-H and
C-H stretching region is also somewhat determin-
ing the fourth PC.

The results demonstrate that a number of
classes of compounds are formed on the basis of
similarity in structure. The IR spectral properties
as well as the MS features of the considered
compounds play a role in the resulting PCA-plots.
In conclusion, combined IR–MS can be used in
applications such as similarity searching and clus-
tering since they are capable of providing a lot of
information about the structure of compounds.

The combined spectral data matrix, after a log

double-centering pretreatment, was also subjected
to PCA, which resulted in four principal compo-
nents that describe 33.4% of the total variance.
The first PC describes 16.7% of the variance and
the second, third and fourth PC 8.0, 4.7 and 4.0%,
respectively. Fig. 3a–c show the scores of PC2
against PC1, PC3 against PC1 and PC4 against
PC1, respectively, and Fig. 4a–d the respective
loadings.

The set of compounds is split up in three
groups along PC1: most amino-acids are situated
in the left part of Fig. 3a, the steroids are grouped
in the extreme right part and the �-blockers ap-
pear in the central region of the plot.
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An inspection of the scores (Fig. 3) and load-
ings (Fig. 4) shows that the first PC is no longer
an indicator of general size. After a log double-
centering of the combined spectral data matrix,
the first PC describes the same information as the
second PC for log transformed combined spectral
data. The same holds for the second and third
PC, that explain the same features as described by
PC3 and PC4, respectively, for the log trans-
formed combined spectral data. PC4 describes the
contrast between compounds with fragment ion
peaks at m/q 57 (variable 287), m/q 72 (variable
302) and m/q 86 (variable 316), which are charac-

teristic of aliphatic amines and a strong IR ab-
sorption in the O-H and C-H stretching region
from compounds with nitrogen heterocycles in
their chemical structures that give peaks at m/q 92
(C7H8

+), m/q 78 (C6H6
+) and m/q 65 (C5H5

+).
After performing a log double-centering pre-

treatment, the size effect of PC1 disappears. Fur-
thermore, the results show the same characteristic
features for assessing the similarity of the com-
pounds as log transformed combined spectra.
However, since some valuable information is con-
tained in the first PC, a logarithmic transforma-
tion is preferred to a log double-centering.

Fig. 2. (a) Loading plot from the PCA of the log transformed combined spectra. The first loading vector is plotted vs. IR and MS
descriptors. (b) Loading plot from the PCA of the log transformed combined spectra, with the second loading vector plotted against
IR and MS descriptors. (c) Loading plot from the PCA of the log transformed combined spectra, with the third loading vector
plotted against IR and MS descriptors. (d) Loading plot from the PCA of the log transformed combined spectra, with the fourth
loading vector plotted against IR and MS descriptors.
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Fig. 3. (a) Score plot from the PCA of the combined spectra after a log double-centering, with PC2 plotted against PC1. For the
numbering of the compounds, see Table 1. (b) Score plot from the PCA of the combined spectra after a log-double-centering,
showing PC3 against PC1. Notation as in a. (c) Score plot from the PCA of the combined spectra after a log double-centering,
showing PC4 against PC1. Notation as in b.

4.2. Sequential projection pursuit of combined
spectral data

The results obtained by SPP on the log trans-
formed combined spectral descriptors are shown
in the score plot of PP1–PP2 (Fig. 5). SPP clearly
shows a separation of groups of compounds. The
group of steroids is separated from the amino-
acids and the �-blockers in PP1. Along PP2, the
group of �-blockers is found as such in the lower
part of the plot, while both the group of amino-
acids and the group of steroids have fallen apart.
One can also observe a layered structure of two

elongated clusters and the upper cluster contains
substances that absorb little IR radiation, due to
many features set to zero. This problem can be
solved by using transmissions instead of absorp-
tions. Therefore, it seems that SPP can be used to
detect artefacts in the data that might influence
the results in PCA. In general, SPP is applied to
detect inhomogeneities in the data instead of find-
ing groups of similar compounds. One can find
two outliers on PP2, compound numbers 25
(testosteron), 27 (progesteron). With PCA, these
outlying objects in the data are much more
difficult to distinguish on PC2 (Fig. 1a). Both
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substances are characterised by extensive MS
fragmentation compared with the other com-
pounds in the data set.

The combined spectral data matrix, after a log
double-centering was also subjected to SPP. In the
score plot of PP1–PP2 (Fig. 6), one can detect
two clusters along PP2. As with log transformed
data, most compounds that show little IR absorp-
tion are located in the upper right of the plot. In
the lower right part, the group of �-blockers3 can
be found entirely but, compared with PCA, one
can detect no clustering due to chemical similar-
ity. One outlier can be identified in the negative
direction of PP1, compound number 5 (tetracy-

clin). This object also has a high negative score on
PC4 (Fig. 3c) and is characterised by very intense
peaks at low m/q-values.

4.3. Hierarchical cluster analysis of combined
spectral data

4.3.1. Qualitati�e comparison of
upgma-clusterings

The technique used for performing a hierarchi-
cal cluster analysis is based on the unweighted
pair-group average (upgma) method, with the cor-
relation coefficient as similarity measure for spec-
tral data and the Tanimoto coefficient for 2-D

Fig. 4. (a) PCA loading plot of the combined spectra after a log double-centering, showing the first loading vector against spectral
descriptors. (b) PCA loading plot of the combined spectra after a log double-centering, with the second loading vector plotted vs.
spectral descriptors. (c) PCA loading plot of the combined spectra after a log double-centering, with the third loading vector plotted
against spectral descriptors. (d) PCA loading plot of the combined spectra after a log double-centering, with the fourth loading
vector plotted against spectral descriptors.
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Fig. 5. Score plot from the SPP of the log transformed
combined spectra, showing PP2 against PP1. For the number-
ing of the compounds, see Table 1.

Fig. 6. Score plot from the SPP of the combined spectra after
a log double-centering, showing PP2 against PP1. For the
numbering of the compounds, see Table 1.

structural fingerprints. The resulting hierarchical
upgma-clustering, based on Daylight structural
fingerprints is shown in Fig. 7 and the clusterings,
based on combined spectral data, after a logarith-
mic transformation and a log double-centering in
Figs. 8 and 9, respectively.

In both classifications, based on combined spec-
tral data (Figs. 8 and 9), the group of steroids can
be found entirely in one cluster. Also, most
amino-acids (L-isoleucin, D-leucin, L-asparagin, L-
aspartic acid) are grouped together in one smaller
cluster, as well as both sugars, maltose and glu-
cose that are located near each other in the re-

spective clusterings. In the classification of log
transformed combined spectra, heroin and codein
are linked together. The �-blockers appear more
dispersed over the tree-structure in both
clusterings.

The classification of the Daylight structural
fingerprints (Fig. 7) clearly shows clusters of simi-
lar compounds, for example, the group of �-
blockers is found entirely in one cluster. Also,
most steroids are contained in one cluster, as well
as most amino-acids. Another example is given by
the alkaloids, codein, morphin and heroin, as well
as melatonin and serotonin, camphor and men-

Table 2
(1) Comparison with four largest clusters of the respective clusterings; (2) comparison with six largest clusters of the respective
clusterings, based on combined spectra and with five largest clusters of the clustering, based Daylight fingerprints

Expert’s/Daylight fingerprintsExpert’s/log combined spectra Expert’s/log dbl centered combined spectra

0.3908 0.4101 0.41971
0.43900.34022 0.3733

Table 3
(1) Comparison of four largest clusters of the respective clusterings; (2) comparison of six largest clusters of the clusterings, based
on combined spectra between them and with five largest clusters of the clustering, based on Daylight structural fingerprints

Log dbl centered data/Daylight fingerprintLog spectra/log dbl centered spectra Log spectra/Daylight fingerprint

0.6862 0.61741 0.5798
0.4102 0.55483 0.4163
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Fig. 7. Hierarchical upgma-clustering of the 2-D Daylight structural fingerprints.
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Fig. 8. Hierarchical upgma-clustering of the log transformed combined spectra.

thol and the purine derivatives, caffein, pentoxi-
fyllin and purin that are linked together in the
tree-structure. At first sight, the clustering with
combined mass-infrared spectra looks to give
clusters of similar compounds, so that it seems
that combined spectroscopies indeed can provide
characteristic information about the structure of a
compound for assessing similarity/diveristy.

4.3.2. Quantitati�e comparison of upgma-cluster-
ings

In addition to a visual qualitative comparison,
we also used a quantitative measure of similarity,
i.e. the measure of Wallace, for comparing two
clusterings of the same set of compounds. A
comparative study was carried out between the
upgma-clusterings, based on Daylight structural
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fingerprints or combined IR–MS. Furthermore,
the different clustering results were compared
with an expert’s classification of the same set of
compounds, based on our own evaluation ac-
cording to known structure and pharmacological
activity. However, other classifications might be
proposed by others due to the wide variety of
compounds in the data set. The expert’s classifi-
cation is shown in Fig. 10.

In Table 2, the results from the quantitative
comparison of the different upgma-clusterings
with the expert’s classification are presented. All
three upgma-classifications compare almost as
well with the expert’s classification. However,
the clustering of the Daylight structural finger-
prints compares most with the expert’s classifica-
tion, while no real distinction can be made
between the clustering of the log transformed

Fig. 9. Hierarchical upgma-clustering of the combined spectra after a log double-centering.
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Table 4
Comparison of the different hierarchical classifications with the expert’s classification; comparison with four largest clusters of the respective clusterings

Expert’s/log dbl centred combinedExpert’s/log combinedExpert’s/raw IRExpert’s/normExpert’s/MS Expert’s/log IR
features spectraMS spectrafeatures

0.3638 0.3908 0.41010.4125 0.4458 0.4343

Table 5
Comparison of the different hierarchical classifications, based on spectral characteristics, with the hierarchical classification based on 2-D structural Daylight
fingerprintsa

MS/fingerprints Norm Log IR Log combinedRaw IR Log dbl centred combined
spectra/fingerprintsMS/fingerprints features/fingerprints features/fingerprints spectra/fingerprints

0.5040 0.49661
2 0.61740.5699 0.5946 0.6862

a (1) Comparison of three largest clusters of the respective clusterings; (2) comparison of four largest clusters of the respective clusterings.
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Fig. 10. Expert’s classification of the set of 61 substances.

diversity. However, a logarithmic transformation
gives rise to somewhat better cluster solutions as
compared with a log double-centering pretreat-
ment.

The results for combined spectral data were
subsequently compared with those obtained for MS
[6] and IR spectra [7]. They are tabulated in Tables
4 and 5. It is found that the resulting upgma-clas-
sification of combined MS–IR spectral properties
is about as similar to the expert’s clas-sification as
the Ward’s classification of the MS data, but it
appears less similar as compared with the upgma-
clustering of the IR spectral features. Furthermore,
no major distinction can be observed between both
clusterings based on a single spectroscopic tech-
nique and the clustering of the combined spectral
data when comparing them with the hierarchical
classification of the Daylight structural finger-
prints. Therefore, it can be concluded that a com-
bination of both spectroscopic methods is not able
to provide more information about the structure of
compounds than one single spectroscopic tech-
nique. Moreover, it seems, at least for the small
data set of 61 chemical compounds, that IR spec-
troscopy can predict the similarity/diversity of
chemical compounds somewhat better than mass
spectrometry.

5. Conclusion

This paper approaches exploratory chemometric
techniques to elucidate whether combined analyti-
cal spectroscopies, i.e. mass spectrometry and IR
spectroscopy, enable us to deduce the similarity/di-
versity of compounds better than one single spec-
troscopic technique. For this, hierarchical
upgma-clusterings based on combined IR–MS
data or Daylight structural fingerprints were com-
pared mutually and with an expert’s classification
of the same set of substances.

This application of clustering techniques has
demonstrated that combined IR–MS are capable
of providing a lot of structural relevant information
since the resulting classification compares well with
the classification of 2-D structural fingerprints and
with the expert’s classification. However, a loga-
rithmic transformation or a log double-centering

and the log double-centered combined spectral
data.

The numerical results for the comparison of the
hierarchical upgma-clusterings of combined spec-
tra and Daylight fingerprints between them are
reported in Table 3. Comparing the four largest
clusters of each classification, both clusterings,
based on log transformed and log double-centered
combined spectra are quite similar to the classifica-
tion, based on Daylight fingerprints. However, the
clustering of the log transformed combined spectra
compares somewhat more with the clustering of the
Daylight fingerprints than the clustering of the log
double-centered combined spectra. The same con-
clusion can be made when comparing the six largest
clusters of the clusterings, based on combined
spectra with the five largest clusters of the cluster-
ing, based on Daylight structural fingerprints.

These results show that a classification, based on
combined IR–MS characteristics is equally good as
that obtained with 2-D Daylight structural finger-
prints. Therefore, it seems that one can use com-
bined spectral features instead of the structure of
the compounds for characterising their similarity/
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pretreatment is necessary to obtain good clustering
results, determined by both spectroscopic tech-
niques.

In conclusion, it seems that a combination of two
complementary spectra for the same compound, i.e.
MS and IR spectroscopy, is not necessarily more
powerful for similarity/diversity assignments than
just one spectroscopic technique.
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